Sulfhydryls associated with H2O2-induced channel activation are on luminal side of ryanodine receptors.

نویسندگان

  • Toshiharu Oba
  • Tatsuya Ishikawa
  • Mamoru Yamaguchi
چکیده

The mechanism underlying H2O2-induced activation of frog skeletal muscle ryanodine receptors was studied using skinned fibers and by measuring single Ca2+-release channel current. Exposure of skinned fibers to 3-10 mM H2O2 elicited spontaneous contractures. H2O2 at 1 mM potentiated caffeine contracture. When the Ca2+-release channels were incorporated into lipid bilayers, open probability ( P o) and open time constants were increased on intraluminal addition of H2O2 in the presence of cis catalase, but unitary conductance and reversal potential were not affected. Exposure to cis H2O2 at 1.5 mM failed to activate the channel in the presence of trans catalase. Application of 1.5 mM H2O2 to the transside of a channel that had been oxidized by cis p-chloromercuriphenylsulfonic acid (pCMPS; 50 μM) still led to an increase in P o, comparable to that elicited by trans 1.5 mM H2O2 without pCMPS. Addition of cis pCMPS to channels that had been treated with or without trans H2O2 rapidly resulted in high P o followed by closure of the channel. These results suggest that oxidation of luminal sulfhydryls in the Ca2+-release channel may contribute to H2O2-induced channel activation and muscle contracture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of cardiac ryanodine receptors by cardiac glycosides.

This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 chann...

متن کامل

Evidence for Ca Activation and Inactivation Sites on the Luminal Side of the Cardiac Ryanodine Receptor Complex

We have used tryptic digestion to determine whether Ca can regulate cardiac ryanodine receptor (RyR) channel gating from within the lumen of the sarcoplasmic reticulum (SR) or whether Ca must first flow through the channel and act via cytosolically located binding sites. Cardiac RyRs were incorporated into bilayers, and trypsin was applied to the luminal side of the bilayer. We found that befor...

متن کامل

Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex.

We have used tryptic digestion to determine whether Ca(2+) can regulate cardiac ryanodine receptor (RyR) channel gating from within the lumen of the sarcoplasmic reticulum (SR) or whether Ca(2+) must first flow through the channel and act via cytosolically located binding sites. Cardiac RyRs were incorporated into bilayers, and trypsin was applied to the luminal side of the bilayer. We found th...

متن کامل

Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity

Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequence...

متن کامل

Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease.

The cardiac ryanodine receptor (RyR2) is the sarcoplasmic reticulum (SR) Ca(2+) release channel which is responsible for generation of the cytosolic Ca(2+) transient required for activation of cardiac contraction. RyR2 functional activity is governed by changes in [Ca(2+)] on both the cytosolic and luminal phase of the RyR2 channel. Activation of RyR2 by cytosolic Ca(2+) results in Ca(2+)-induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American journal of physiology

دوره 274 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998